
 IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

 International Journal of Arts & Education Research

Copyright@ijaer.org Page 252

ANALYTICAL PRACTICE FOR MANAGING AND SECURING

 DATA IN SIMULTANEOUS PARALLEL COMPUTATION

 ENVIRONMENT
 Kapil Dev Dr. Amal Kumar Deka

 Research Scholar Professor

CMJ University Shillong Guwahati University Assam

Abstract

A large number of constraint-based devices are connected with the internet in developing computing

environments such as the internet of things (IoT) or smart device networking. The devices automatically

communicate with one another by way of the linked network, which in turn provides us with new experiences.

It is extremely necessary to secure the security of connected end nodes in order to make optimal use of the

capabilities offered by the Internet of Things (IoT). If the security of even one of the nodes is breached, the

operation as a whole will suffer significantly. Due to the limited resources available, however, implementing

suitable cryptographic functions on the device is a very challenging task. The purpose of this research is to

offer a way for injecting the high performance security algorithm into data analytics that are carried out using

IOT-based devices. With parallel computing devices and algorithms, the efficiency of data analysis security

mechanisms will be significantly improved. AES is a symmetric encryption method that works efficiently for

both hardware and software applications. The performance of data analytics in IoT-based systems can be

increased by running the AES algorithm in parallel. The performance of several different Intel-based multi-

core processing architectures is evaluated with this technology, and the results show a significant increase.

Keywords: security, parallel computation

Introduction

The analysis of data stored in networked databases has become more important in the modern day. During the

process of transferring and analysing the data, these network databases must to be protected. Consequently,

the provision of an efficient security method to the sensitive data should be the key focus. To address the

scenario effectively, you should go with the option of using the AES algorithm. Since this study makes use of

three main technologies, let's begin by determining the reasons why these technologies are necessary.[1]

Why AES algorithm?

The advanced encryption standard, often known as the AES algorithm, is now the symmetric encryption

method that is most likely to be encountered in the modern day. It is also the most widely used method. It is

discovered at a rate that is at least six times quicker than the triple data encryption norm (DES). It was

necessary to find an alternative to DES since the key size it used was insufficient. The increasing processing

capability led many people to believe that it was defenceless against a thorough key search assault. Triple

DES was developed with the intention of addressing this drawback; nonetheless, it was found to be moderate.

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 253

The components of AES are created as per the following points:

 128-piece information, 128/192/256-piece keys

 More grounded and quicker than triple-DES

 give full determination and plan points of interest

 Programming implementable in C and Java is easy.

The operation of AES involves an iterative, and its success is contingent on a "substitution-permutation

network." It is composed of a series of interconnected processes, some of which entail switching out inputs

for certain outputs (known as replacements), and others of which include moving bits about in different

configurations (stages). AES performs each and every one of its calculations on bytes rather than bits, which

is an odd choice. As a consequence of this, AES considers the plaintext block's 128 bits as if they were 16

bytes. For the purpose of working with it as a framework, these 16 bytes are organised into four segments and

four columns. In contrast to DES, the number of rounds in AES is not fixed; rather, it varies depending on the

length of the key being used. Ten rounds are utilised by AES for 128-piece keys, twelve rounds are utilised

for 192-piece keys, and fourteen rounds are utilised for 256-piece keys. Due to the fact that it is secured using

many rounds and keys, the initial AES key is used to calculate each of these round keys, and each of these

round keys uses an alternative 128-piece round key. As a result, there is an absolute requirement to make the

AES algorithm scalable. Because it uses many rounds to encrypt the data, it takes a longer amount of time to

encrypt huge amounts of data. It is possible to improve the performance of the AES algorithm by decreasing

the amount of time it takes for the algorithm to respond. In addition to providing effective data analysis,

MATLAB also includes a toolbox for parallel computing, which may be used at any time.[2]

The implementation of the parallel AES algorithm will make use of the toolbox's fundamental building

blocks. Therefore, using a combination of MATLAB's parallel AES algorithm and its data analytics algorithm

will enable safe data processing that is also highly efficient. The ability to respond in a timely manner is the

most important factor in the success of the internet of things (IoT), and the addition of data security to the

processing of sensitive data will lead to a positive societal effect. This strategy will result in an improvement

in the performance of the AES algorithm, which will allow for faster processing times. Performance may vary

depending on the type of multi-core processing that is utilised in the constructions (such as GPU or FPGA, for

example). Consequently, the scalability of the data analytics algorithm will not suffer as a result of the

combination of the security algorithm and the data analytics algorithm. Due to the sensitive nature of the data

analytics algorithm, it is essential that it be protected. During this process of analysing this data, many

fascinating patterns will emerge, and important choices will need to be made. Therefore, the combination of

the security algorithm and the data analytics algorithm will give protection for a wide variety of patterns and

judgments. When doing an analysis of medical data, such as determining the association between blood cells

and diseases such as cancer and HIV, for instance, we need to exercise extreme caution when transmitting

sensitive data across a connected media. The Advanced Encryption Standard (AES) technique will be used to

encrypt sensitive data used in transactions.

Why GPU?

The graphical processing unit, or GPU, is initially developed for the purpose of managing and processing

multimedia programmes in addition to other applications that are data heavy. However, due to the

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 254

effectiveness of the method, it is currently utilised for the solution of standard numerical computing issues. It

is equipped with tens of thousands of concurrent threads and hundreds of processors at the same time. It uses

data level parallelism, which implies that data is partitioned and distributed among numerous processors, and

those processors will handle multiple data at the same time. Due to the fact that it will have 100s of ALU to

handle numerical computations, it will do numerical computations extremely well, making it incredibly

efficient.[3]

Parallel computing toolbox

It is a collection of tools for resolving data-intensive problems with the help of multi-core CPUs and other

processing architectures such as GPUs and FPGAs. This toolkit can accelerate GPU to address massive data

issues even without utilising the CUDA framework, which is CUDA's primary strength in the data-intensive

computing space. With the help of this toolbox, we are able to generate workers on the local level to make use

of the various cores included within the computer. Libraries have the ability to speed up the several cores that

are included in a parallel pool. If the amount of data is very large, it should be saved in a data store so that it

may be retrieved quickly and used in parallel programming. For the GPU to accelerate calculations, the data

must first be saved in the gpuarray (local memory of GPU). The calculations will be done on the GPU, and

the results will be transferred from the GPU to the local memory of the CPU using library functions (gather,

Parfeval, Mapreduce, Parcluster, Parpool and Gcp). The remaining sections of the study are organised as

follows: creation of IOT, development of algorithm, experimental analysis, and related studies done in this

field.

Constructing IoT computational model

The Internet of Things (IoT) is the inter-networking of physical nodes, vehicles (also referred to as 'associated

nodes' and'smart devices'), buildings, and other things that are equipped with hardware, programming,

sensors, actuators, and system networks that enable these items to collect and exchange information.[4] There

are still various misconceptions and facts regarding the Internet of Things, such as power concerns,

performance challenges, and problems associated with decision-making systems. Figure 1 contains a

summary of the most important contributing elements to these problems. In most cases, the amount of delay

that occurs is used as the performance metric. However, connecting a device to the internet does not

automatically qualify as Internet of Things (IoT), because there are three essential components that are

included in virtually all applications that use IoT.

1. 1 Computing part: Computing is done at one point and moved to connectivity part and our proposed

AES algorithm works in this part. In this part, repeatability and speed of task is considered as prime

factor.

2. Connectivity part: creates a network to pass information between the connected nodes.

3. Decision-making systems: When values and information come from various nodes and it should be

reconstructed or recommendations should be made on the incoming values. This power can be

achieved through the appropriate use of reasoning and recommendations.

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 255

Figure 1 Requirements for IoT-based applications

Security mechanism through IOT

The objective of the time constraint-based secured key generation approach is to provide an efficient means of

managing the keys that are necessary for a secure connection. The objective of the process known as "local

key generation" is to produce a key simultaneously on both the transmitting device and the receiving device,

which are known as "communicating devices." Figure 2 provides an overview of the procedure, which states

that, in order to increase the overall degree of data security during transmission, only a selected key will be

transmitted back and forth. In addition, a key change will be scheduled either at the time of transmission or in

response to a user's request. As shown in Figure 1.2, the production of the key is a task that is individually

carried out by each communication party. The sole limitation imposed by this scenario is that both parties

must generate keys utilising the same time structure. Because reply assaults that are based on legitimate

messages that were delivered using keys created in previous time periods are ignored, the strength of the

validity of the keys is restricted to a time interval. This helps to keep the validity of the keys as strong as

possible. By capitalising on such aspects, we have demonstrated that one of the primary benefits of the time-

based approach to secure key generation is that it eliminates the requirement for a server in the management

of secure keys and the production of security constructs in the manner described below.[5]

Figure 2 Constraint-based encryption for IoT

Plain text

1. Generate a time stamp using the GPS data that you have received. 2 Generate the ID using the plain

text (PID). Calculations for hash 3 should be carried out using the parallel AES technique, which is

covered in section 4.[6]

Encrypted text

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 256

2. Create an encryption ID (EID) to improve the authentication Payload is used convey information to

associated application running on remote servers

3. When the agent receives the ciphered message, it will de-cipher it by generating the appropriate

decryption key using the attached timestamp. If the time constraint difference between the current and

received is more than the threshold level the message is discarded.

Security protocols to be used with IoT network

We are concentrating on improving efficiency by utilising parallel algorithms. If secrecy is required, a block

cypher such as AES can be employed, and SHA can be used if integrity is required. The AES strategy has

been utilised in this method.

Parallel AES algorithm

Plaintext for the AES method has traditionally been said to be 128 bits. And the key's size might range

anywhere from 128 bits to 256 bits or even 192 bits. If only one core of a multi-core machine is executing this

encryption, the other cores will be idle during this time. Plaintext is given into each core for processing in

order to prevent the cores from being properly utilised to find a solution to the problem. The scalability of the

technique will be improved if encryption is done on each core individually. The T text file that is produced by

Internet of Things devices is segmented into blocks of 128 bits. Each block of 128 bits is sent into its own

independent core, which then carries out the encryption. Following encryption, a cypher text will be produced

from each core. If we combine those cipher text, we can have the cipher text for whole plaintext file.

Data level parallelism

In the data level parallelism approach, the incoming data is initially chunked into 128 bit blocks before being

distributed among parallel computing nodes. Every node will do the identical operation, but on a distinct set

of data. Data taken as input this data is obtained from a text file that is composed of data generated by the

device and varies in terms of both its size and its content. The data is divided into blocks of 128 bits each.

Table 1 Sample input data

• Comparisons – We compared

1. 1 Execution time of Intel multi-core processors

2. 2 GPU-based computing with CPU-based computing against speedup.

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 257

Algorithm design

With respect to Figure 4

Algorithm 1 Serial algorithm

FOR every round DO

Step 1 Calculate the set of round keys from the time key.

Step 2 Initiate the state array with the blocks of data from plain text.

Step 3 Add the first round key to the state array.

Step 4 Iterate nine rounds of state manipulation.

Step 5 Finish the tenth and final round of manipulation.

Step 6 Copy the content of final state as encrypted data

The following instructions will show you how to parallelize a serial process. Let input segment A contains m

× n data blocks.

Where

m no of rows

n no of columns.

Steps 1, 2, 3 should be iterated in a parallel computing tool with the following algorithm

Algorithm 2 Parallel algorithm

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 258

Process description

1 Splitting the plaintext:

The input will be in the form of plaintext, which will be delivered as a string that consists of 0s and 1s. The

process consists of converting this text into an array that consists of zeros and ones. String indexing and type

casting will be utilised in order to complete this conversion.[7]

Output: array which contains 0s and 1s.

2 Moving the plain text from CPU to GPU:

Input: Array which contains 0s and 1s

Output: The array will be copied to GPU’s local memory.

3 Processing AES algorithm in parallel:

Input: Array resides in GPU’s local memory

The process consists of feeding each 128-bit block into its respective individual core. A concurrent

implementation of the AES algorithm will be carried out on each and every 128-bit block. The activity will be

simultaneously processed by each core. Therefore, the 128-bit encrypted block will be produced by each and

every core in the system.[8]

Output: Several 128 bit blocks of encrypted text.

4 Combining as a whole cipher text:

Input: Several 128 bit blocks of encrypted text.

Process: The each and every 128 bit blocks will be copied to separate array. This array contains the whole

cipher text.

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 259

Output: The whole cipher text array

5 Moving the whole cipher text array from GPU to CPU:

Input: The whole cipher text

Process: The cipher text will be moved from GPU to CPU using parallel computing toolbox gather function.

This function will move data from GPU to CPU.

Output: The cipher text will be residing in CPU memory.

Parallel implementation

This section discusses the CPU and GPU Cores Accelerating Technique that may be achieved with the help of

the MATLAB Parallel Computing Toolbox. MathWorks has developed a toolkit they term the "parallel

computing toolbox" in order to speed up both the CPU and the GPU. The CPU and GPU may be sped up with

the help of this toolbox's preset routines. In the same way that parallel computing can be done efficiently in

the MATLAB environment, so too can data analytics. Therefore, the security algorithm is also developed in

MATLAB environment in order to link this security algorithm with the data analytics algorithm for decision

making in IoT. The heterogeneous environment accelerates both the CPU and the GPU. Take a look at Figure

3 for a more in-depth portrayal.[9]

Figure 3 Parallel AES execution in GPU

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 260

Figure 4 Parallellising AES algorithm

Experimental results

Number of simultaneous threads is equals to number of physical cores residing in the processing system. But

we can create any number of threads in repeated core. So performance improvement can be seen only when

creating the number of simultaneous threads equals to the number of physical cores. Some of the operations

are not supported by GPU, in that situation, we have transferred the data from GPU local memory to CPU

local memory and vice versa. Parallel AES algorithm implementation will give much performance

improvement on large amount of data. The transformation of data from CPU to GPU or vice versa may

decrease the efficiency of GPU. So the number of transfer between CPU and GPU needs to be minimised as

much as possible. The basic level optimisation only done using GPU and the performance improvement will

be more or less equals to i5 processing system performance improvement. The performance improvement rate

will be proportional to number of cores residing in CPU. If the improvement rate needs to be increased, then

use processing system which has more number of cores. By analysing various situations in executing parallel

AES algorithm, we found the following feature selection process listed in Table 2.

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 261

Table 2 Feature selection in Intel processors

Table 3 Serial code execution times

Parallelization of the AES method is accomplished with both the CPU and the GPU. The processing system

that we have utilised can increase the efficiency of the algorithm, which in turn leads to better overall

performance. The effectiveness of the algorithm would increase by a factor of two if we employed an i2

processing system. The efficiency of the method would increase by a factor of four if we employed a

processing system with i5 architecture. If we employ a processing machine with n cores, then the performance

will improve at a rate that is n times greater. However, while speeding GPU, all we have done is use the

GPU's most fundamental optimization settings for calculation. In addition, the GPU does not support all of the

operations that are part of the AES algorithm. Therefore, these computations have been completed by the

CPU. Therefore, the process of transforming data between the CPU and GPU has developed into an additional

source of overhead. The calculations using the GPU required much more time than the concurrent processing

on the i5. However, the fundamental optimization was completed in each and every processing system by

default. When we ran the serial code in i2 and i3, i3 took less time than i2 did, and i3 and i5 produced the

same results in both cases.

Table 4 Parallel code execution times

Both Le et al. (2010) and Di Biagio et al. (2009) worked on parallelizing the AES algorithm by utilising the

CUDA framework and GPU-based implementation. This straightforward framework leads to an increase in

speedup by making better use of the resources that are already available. The success of this solution is being

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 262

evaluated based on how well it scales in terms of processing power. Take a look at Figure 1 which illustrates

the difference between serial and parallel processing in terms of execution.

Figure 1 (a) 500 pieces of divided text chart depicting performance (b) Graph showing the performance

of 100 partitioned blocks (c) Graph showing the performance of partitioned blocks (d) Graph showing

the comparison between the i5 and GPU with some minimal optimization (see online version for

colours)

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 263

Conclusions

When it comes to performance, doing data analytics in applications based on the Internet of Things presents a

number of challenges. Incorporating security measures into data analytics systems will thus result in an

increase in load. [10]The speed of the AES algorithm may be enhanced by employing parallelization and time

stamp-based key generation. This can be done using either the CPU or the GPU. The injection of security

algorithms is carried out effectively in such a way that it does not have an impact on the scalability of data

analytics. Some of the operations cannot be performed within the GPU since MATLAB's environment

prevents it from doing so. We are able to complete all of the procedures that are necessary for AES encryption

if we make use of CUDA and several other types of approaches that accelerate computation. With this

strategy, the graphics processing unit (GPU) was only employed for very basic level optimization, and only

few of the GPU's available cores were put to good use. In the not-too-distant future, AES encryption and

decryption operations will be carried out using the GPU to their fullest potential. The use of heterogeneous

multi-core computing, such as CPU-GPU, coprocessors, and specialised processors like Intel Xeon, can boost

the performance of applications that are based on the Internet of Things (IoT).

References

[1] Altinigneli, M.C., Plant, C. and Böhm, C. (2010) ‘Massively parallel expectation maximization using

graphics processing units’, in Proceedings of the 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, August, pp.838–846.

[2] Babar, S., Stango, A., Prasad, N., Sen, J. and Prasad, R. (2011) ‘Proposed embedded security

framework for internet of things (IoT)’, in 2011 2nd International Conference on Wireless

Communication, Vehicular Technology, Information Theory and Aerospace & Electronics Systems

Technology (Wireless VITAE), IEEE, February, pp.1–5.

[3] Bae, G.C. and Shin, K.W. (2011) ‘An efficient hardware implementation of lightweight block cipher

algorithm CLEFIA for IoT security applications’, Journal of the Korea Institute of Information and

Communication Engineering, Vol. 20, No. 2, pp.351–358.

[4] Cao, H. and Chen, J. (2012) ‘Multicore computing for SIFT algorithm in MATLAB® parallel

environment’, in 2012 IEEE 18th International Conference on Parallel and Distributed Systems

(ICPADS), IEEE, December, pp.924–929.

[5] Irani, S., Picone, M., Gonizzi, P., Veltri, L. and Ferrari, G. (2011) ‘IoT-OAS: an oauth-based

authorization service architecture for secure services in IoT scenarios’, IEEE Sensors Journal, Vol. 15,

No. 2, pp.1224–1234.

[6] Kepner, J., Gadepally, V., Hancock, B., Michaleas, P., Michel, E. and Varia, M. (2012) ‘Parallel

vectorized algebraic AES in Matlab for rapid prototyping of encrypted sensor processing algorithms

and database analytics’, in High Performance Extreme Computing Conference (HPEC), IEEE,

September, pp.1–8.

[7] Kumar, U., Borgohain, T. and Sanyal, S. (2011) Comparative Analysis of Cryptography Library in

IoT, arXiv preprint arXiv: 1504.04306.

[8] Liu, B. and Baas, B.M. (2013) ‘Parallel AES encryption engines for many-core processor arrays’,

IEEE Transactions on Computers, Vol. 62, No. 3, pp.536–547

IJAER/ Aug-Sep 2012 /Volume-1/Issue-2 ISSN: 2278-9677

Copyright@ijaer.org Page 264

[9] Mao, Y., Li, J., Chen, M.R., Liu, J., Xie, C. and Zhan, Y. (2012) ‘Fully secure fuzzy identity-based

encryption for secure IoT communications’, Computer Standards & Interfaces, Vol. 44, pp.117–121.

[10] Wang, M., Wang, B., He, Q., Liu, X. and Zhu, K. (2012) Analysis of GPU Parallel Computing based

on Matlab, arXiv preprint arXiv: 1505.06561.

